Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Exp Eye Res ; 239: 109758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123011

RESUMO

Recombinant adeno-associated viral vectors (rAAV) are the safest and most effective gene delivery platform to drive the treatment of many inherited eye disorders in well-characterized animal models. The use in rAAV of ubiquitous promoters derived from viral sequences such as CMV/CBA (chicken ß-actin promoter with cytomegalovirus enhancer) can lead to unwanted side effects such as pro-inflammatory immune responses and retinal cytotoxicity, thus reducing therapy efficacy. Thus, an advance in gene therapy is the availability of small promoters, that potentiate and direct gene expression to the cell type of interest, with higher safety and efficacy. In this study, we used six human mini-promoters packaged in rAAV2 quadruple mutant (Y-F) to test for transduction of the rat retina after intravitreal injection. After four weeks, immunohistochemical analysis detected GFP-labeled cells in the ganglion cell layer (GCL) for all constructs tested. Among them, Ple25sh1, Ple25sh2 and Ple53 promoted a widespread reporter-transgene expression in the GCL, with an increased number of GFP-expressing retinal ganglion cells when compared with the CMV/CBA vector. Moreover, Ple53 provided the strongest levels of GFP fluorescence in both cell soma and axons of retinal ganglion cells (RGCs) without any detectable adverse effects in retina function. Remarkably, a nearly 50-fold reduction in the number of intravitreally injected vector particles containing Ple53 promoter, still attained levels of transgene expression similar to CMV/CBA. Thus, the tested MiniPs show great potential for protocols of retinal gene therapy in therapeutic applications for retinal degenerations, especially those involving RGC-related disorders such as glaucoma.


Assuntos
Infecções por Citomegalovirus , Células Ganglionares da Retina , Ratos , Humanos , Animais , Células Ganglionares da Retina/metabolismo , Vetores Genéticos , Retina/metabolismo , Transgenes , Injeções Intravítreas , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Dependovirus/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transdução Genética
2.
Mol Ther Methods Clin Dev ; 29: 406-417, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37251979

RESUMO

Optogenetic gene therapies offer a promising strategy for restoring vision to patients with retinal degenerative diseases, such as retinitis pigmentosa (RP). Several clinical trials have begun in this area using different vectors and optogenetic proteins (Clinical Identifiers: NCT02556736, NCT03326336, NCT04945772, and NCT04278131). Here we present preclinical efficacy and safety data for the NCT04278131 trial, which uses an AAV2 vector and Chronos as the optogenetic protein. Efficacy was assessed in mice in a dose-dependent manner using electroretinograms (ERGs). Safety was assessed in rats, nonhuman primates, and mice, using several tests, including immunohistochemical analyses and cell counts (rats), electroretinograms (nonhuman primates), and ocular toxicology assays (mice). The results showed that Chronos-expressing vectors were efficacious over a broad range of vector doses and stimulating light intensities, and were well tolerated: no test article-related findings were observed in the anatomical and electrophysiological assays performed.

3.
Front Neurosci ; 17: 1119724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051151

RESUMO

Introduction: Therapies for Leber hereditary optic neuropathy (LHON), in common with all disorders caused by mutated mitochondrial DNA, are inadequate. We have developed two gene therapy strategies for the disease: mitochondrial-targeted and allotopic expressed and compared them in a mouse model of LHON. Methods: A LHON mouse model was generated by intravitreal injection of a mitochondrialtargeted Adeno-associated virus (AAV) carrying mutant human NADH dehydrogenase 4 gene (hND4/m.11778G>A) to induce retinal ganglion cell (RGC) degeneration and axon loss, the hallmark of the human disease. We then attempted to rescue those mice using a second intravitreal injection of either mitochondrial-targeted or allotopic expressed wildtype human ND4. The rescue of RGCs and their axons were assessed using serial pattern electroretinogram (PERG) and transmission electron microscopy. Results: Compared to non-rescued LHON controls where PERG amplitude was much reduced, both strategies significantly preserved PERG amplitude over 15 months. However, the rescue effect was more marked with mitochondrial-targeted therapy than with allotopic therapy (p = 0.0128). Post-mortem analysis showed that mitochondrial-targeted human ND4 better preserved small axons that are preferentially lost in human LHON. Conclusions: These results in a pre-clinical mouse model of LHON suggest that mitochondrially-targeted AAV gene therapy, compared to allotopic AAV gene therapy, is more efficient in rescuing the LHON phenotype.

4.
Mol Ther ; 31(7): 2028-2041, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056049

RESUMO

In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.


Assuntos
Parvovirinae , Retinite Pigmentosa , Humanos , Animais , Cães , Camundongos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/terapia , Retinite Pigmentosa/metabolismo , Retina/metabolismo , Eletrorretinografia , Rodopsina/metabolismo
5.
Gene Ther ; 29(6): 368-378, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383288

RESUMO

Therapies for genetic disorders caused by mutated mitochondrial DNA are an unmet need, in large part due barriers in delivering DNA to the organelle and the absence of relevant animal models. We injected into mouse eyes a mitochondrially targeted Adeno-Associated-Virus (MTS-AAV) to deliver the mutant human NADH ubiquinone oxidoreductase subunit I (hND1/m.3460 G > A) responsible for Leber's hereditary optic neuropathy, the most common primary mitochondrial genetic disease. We show that the expression of the mutant hND1 delivered to retinal ganglion cells (RGC) layer colocalizes with the mitochondrial marker PORIN and the assembly of the expressed hND1 protein into host respiration complex I. The hND1-injected eyes exhibit hallmarks of the human disease with progressive loss of RGC function and number, as well as optic nerve degeneration. We also show that gene therapy in the hND1 eyes by means of an injection of a second MTS-AAV vector carrying wild-type human ND1 restores mitochondrial respiratory complex I activity, the rate of ATP synthesis and protects RGCs and their axons from dysfunction and degeneration. These results prove that MTS-AAV is a highly efficient gene delivery approach with the ability to create mito-animal models and has the therapeutic potential to treat mitochondrial genetic diseases.


Assuntos
Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Terapia Genética/métodos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Células Ganglionares da Retina/metabolismo
6.
Gene Ther ; 29(3-4): 147-156, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34363035

RESUMO

Glaucoma is a prevalent neurodegenerative disease that is characterized by progressive visual field loss. It is the leading cause of irreversible blindness in the world. The main risk factor for glaucoma is elevated intraocular pressure that results in the damage and death of retinal ganglion cells (RGCs) and their axons. The death of RGCs has been shown to be apoptotic. We tested the hypothesis that blocking the activation of apoptosis may be an effective strategy to prevent RGC death and preserve functional vision in glaucoma. In the magnetic microbead mouse model of induced ocular hypertension, inhibition of RGC apoptosis was targeted through viral-mediated ocular delivery of the X-linked inhibitor of apoptosis (XIAP) gene, a potent caspase inhibitor. Pattern electroretinograms revealed that XIAP therapy resulted in significant protection of both somal and axonal RGC function in glaucomatous eyes. Histology confirmed that the treated optic nerves showed preservation of axon counts and reduced glial cell infiltration. These results show that XIAP is able to provide both functional and structural protection of RGCs in the microbead model of glaucoma and provide important proof-of-principle for XIAP's efficacy as a neuroprotective treatment for glaucoma.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Animais , Axônios , Modelos Animais de Doenças , Terapia Genética , Glaucoma/genética , Glaucoma/terapia , Pressão Intraocular , Camundongos , Células Ganglionares da Retina/metabolismo
8.
FASEB J ; 35(10): e21927, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547123

RESUMO

Cone photoreceptors are responsible for the visual acuity and color vision of the human eye. Red/green cone opsin missense mutations N94K, W177R, P307L, R330Q, and G338E have been identified in subjects with congenital blue cone monochromacy or color-vision deficiency. Studies on disease mechanisms due to these cone opsin mutations have been previously carried out exclusively in vitro, and the reported impairments were not always consistent. Here we expressed these mutants via AAV specifically in vivo in M-opsin knockout mouse cones to investigate their subcellular localization, the pathogenic effects on cone structure, function, and cone viability. We show that these mutations alter the M-opsin structure, function, and localization. N94K and W177R mutants appeared to be misfolded since they localized exclusively in cone inner segments and endoplasmic reticulum. In contrast, P307L, R330Q, and G338E mutants were detected predominately in cone outer segments. Expression of R330Q and G338E, but not P307L opsins, also partially restored expression and correct localization of cone PDE6α' and cone transducin γ and resulted in partial rescue of M-cone-mediated light responses. Expression of W177R and P307L mutants significantly reduced cone viability, whereas N94K, R330Q, and G338E were only modestly toxic. We propose that although the underlying biochemical and cellular defects caused by these mutants are distinct, they all seem to exhibit a dominant phenotype, resembling autosomal dominant retinitis pigmentosa associated with the majority of rhodopsin missense mutations. The understanding of the molecular mechanisms associated with these cone opsin mutants is fundamental to developing targeted therapies for cone dystrophy/dysfunction.


Assuntos
Distrofia de Cones/genética , Opsinas dos Cones/genética , Genes Ligados ao Cromossomo X , Mutação de Sentido Incorreto/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Retinite Pigmentosa/genética , Rodopsina/genética , Opsinas de Bastonetes/genética
9.
Transl Vis Sci Technol ; 10(6): 22, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34111268

RESUMO

Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) imaging in patients with achromatopsia (ACHM) and albinism is not always successful. Here, we tested whether optical coherence tomography (OCT) measures of foveal structure differed between patients for whom AOSLO images were either quantifiable or unquantifiable. Methods: The study included 166 subjects (84 with ACHM; 82 with albinism) with previously acquired OCT scans, AOSLO images, and best-corrected visual acuity (BCVA, if available). Foveal OCT scans were assessed for outer retinal structure, outer nuclear layer thickness, and hypoplasia. AOSLO images were graded as quantifiable if a peak cone density could be measured and/or usable if the location of peak density could be identified and the parafoveal mosaic was quantifiable. Results: Forty-nine percent of subjects with ACHM and 57% of subjects with albinism had quantifiable AOSLO images. Older age and better BCVA were found in subjects with quantifiable AOSLO images for both ACHM (P = 0.0214 and P = 0.0276, respectively) and albinism (P = 0.0073 and P < 0.0004, respectively). There was a significant trend between ellipsoid zone appearance and ability to quantify AOSLO (P = 0.0028). In albinism, OCT metrics of cone structure did not differ between groups. Conclusions: Previously reported AOSLO-based cone density measures in ACHM may not necessarily reflect the degree of remnant cone structure in these patients. Translational Relevance: Until AOSLO is successful in all patients with ACHM and albinism, the possibility of the reported data from a particular cohort not being representative of the entire population remains an important issue to consider when interpreting results from AOSLO studies.


Assuntos
Albinismo , Defeitos da Visão Cromática , Idoso , Albinismo/genética , Benchmarking , Defeitos da Visão Cromática/diagnóstico , Humanos , Oftalmoscopia , Acuidade Visual
10.
Hum Mutat ; 42(6): 641-666, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33847019

RESUMO

Cyclic nucleotide-gated channel ß1 (CNGB1) encodes the 240-kDa ß subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.


Assuntos
Distrofias de Cones e Bastonetes/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estudos de Coortes , Distrofias de Cones e Bastonetes/classificação , Distrofias de Cones e Bastonetes/epidemiologia , Distrofias de Cones e Bastonetes/patologia , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Mutação
11.
Mol Ther ; 29(8): 2456-2468, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33781914

RESUMO

The inherited childhood blindness caused by mutations in NPHP5, a form of Leber congenital amaurosis, results in abnormal development, dysfunction, and degeneration of photoreceptors. A naturally occurring NPHP5 mutation in dogs leads to a phenotype that very nearly duplicates the human retinopathy in terms of the photoreceptors involved, spatial distribution of degeneration, and the natural history of vision loss. We show that adeno-associated virus (AAV)-mediated NPHP5 gene augmentation of mutant canine retinas at the time of active degeneration and peak cell death stably restores photoreceptor structure, function, and vision with either the canine or human NPHP5 transgenes. Mutant cone photoreceptors, which failed to form outer segments during development, reform this structure after treatment. Degenerating rod photoreceptor outer segments are stabilized and develop normal structure. This process begins within 8 weeks after treatment and remains stable throughout the 6-month posttreatment period. In both photoreceptor cell classes mislocalization of rod and cone opsins is minimized or reversed. Retinal function and functional vision are restored. Efficacy of gene therapy in this large animal ciliopathy model of Leber congenital amaurosis provides a path for translation to human treatment.


Assuntos
Proteínas de Ligação a Calmodulina/administração & dosagem , Dependovirus/genética , Amaurose Congênita de Leber/terapia , Células Fotorreceptoras Retinianas Cones/patologia , Animais , Proteínas de Ligação a Calmodulina/farmacologia , Modelos Animais de Doenças , Cães , Eletrorretinografia , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Amaurose Congênita de Leber/genética , Resultado do Tratamento
12.
Transl Vis Sci Technol ; 10(1): 11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33510950

RESUMO

Purpose: To determine whether artifacts in optical coherence tomography (OCT) images are associated with the success or failure of adaptive optics scanning light ophthalmoscopy (AOSLO) imaging in subjects with achromatopsia (ACHM). Methods: Previously acquired OCT and non-confocal, split-detector AOSLO images from one eye of 66 subjects with genetically confirmed achromatopsia (15 CNGA3 and 51 CNGB3) were reviewed along with best-corrected visual acuity (BCVA) and axial length. OCT artifacts in interpolated vertical volumes from CIRRUS macular cubes were divided into four categories: (1) none or minimal, (2) clear and low frequency, (3) low amplitude and high frequency, and (4) high amplitude and high frequency. Each vertical volume was assessed once by two observers. AOSLO success was defined as sufficient image quality in split-detector images at the fovea to assess cone quantity. Results: There was excellent agreement between the two observers for assessing OCT artifact severity category (weighted kappa = 0.88). Overall, AOSLO success was 47%. For subjects with OCT artifact severity category 1, AOSLO success was 65%; for category 2, 47%; for category 3, 11%; and for category 4, 0%. There was a significant association between OCT artifact severity category and AOSLO success (P = 0.0002). Neither BCVA nor axial length was associated with AOSLO success (P = 0.07 and P = 0.75, respectively). Conclusions: Artifacts in OCT volumes are associated with AOSLO success in ACHM. Subjects with less severe OCT artifacts are more likely to be good candidates for AOSLO imaging, whereas AOSLO was successful in only 7% of subjects with category 3 or 4 OCT artifacts. These results may be useful in guiding patient selection for AOSLO imaging. Translational Relevance: Using OCT to prescreen patients could be a valuable tool for clinical trials that utilize AOSLO to reduce costs and decrease patient testing burden.


Assuntos
Artefatos , Defeitos da Visão Cromática , Defeitos da Visão Cromática/diagnóstico , Humanos , Oftalmoscopia , Tomografia de Coerência Óptica , Acuidade Visual
13.
Invest Ophthalmol Vis Sci ; 61(8): 49, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735323

RESUMO

Purpose: Leber hereditary optic neuropathy (LHON) is a genetic form of vision loss that occurs primarily owing to mutations in the nicotinamide adenine dinucleotide dehydrogenase (ND) subunits that make up complex I of the electron transport chain. LHON mutations result in the apoptotic death of retinal ganglion cells. We tested the hypothesis that gene therapy with the X-linked inhibitor of apoptosis (XIAP) would prevent retinal ganglion cell apoptosis and reduce disease progression in a vector-induced mouse model of LHON that carries the ND4 mutation. Methods: Adeno-associated virus (AAV) encoding full length hemagglutinin-tagged XIAP (AAV2.HA-XIAP) or green fluorescent protein (AAV2.GFP) was injected into the vitreous of DBA/1J mice. Two weeks later, the LHON phenotype was induced by AAV delivery of mutant ND4 (AAV2.mND4FLAG) to the vitreous. Retinal function was assessed by pattern electroretinography. Optic nerves were harvested at 4 months, and the effects of XIAP therapy on nerve fiber layer and optic nerve integrity were evaluated using immunohistochemistry, transmission electron microscopy and magnetic resonance imaging. Results: During LHON disease progression, retinal ganglion cell axons are lost. Apoptotic cell bodies are seen in the nuclei of astrocytes or oligodendrocytes in the optic nerve, and there is thinning of the optic nerve and the nerve fiber layer of the retina. At 4 months after disease onset, XIAP gene therapy protects the nerve fiber layer and optic nerve architecture by preserving axon health. XIAP also decreases nuclear fragmentation in resident astrocytes or oligodendrocytes and decreases glial cell infiltration. Conclusions: XIAP therapy improves optic nerve health and delays disease progression in LHON.


Assuntos
Terapia Genética/métodos , Atrofia Óptica Hereditária de Leber , Nervo Óptico , Retina , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Animais , Apoptose , Modelos Animais de Doenças , Eletrorretinografia/métodos , Imuno-Histoquímica , Imageamento por Ressonância Magnética/métodos , Camundongos , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/terapia , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/fisiopatologia , Retina/diagnóstico por imagem , Retina/fisiopatologia , Células Ganglionares da Retina/metabolismo , Resultado do Tratamento
14.
Dev Biol ; 464(2): 111-123, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32562755

RESUMO

The transcription factors Prdm1 (Blimp1) and Vsx2 (Chx10) work downstream of Otx2 to regulate photoreceptor and bipolar cell fates in the developing retina. Mice that lack Vsx2 fail to form bipolar cells while Prdm1 mutants form excess bipolars at the direct expense of photoreceptors. Excess bipolars in Prdm1 mutants appear to derive from rods, suggesting that photoreceptor fate remains mutable for some time after cells become specified. Here we tested whether bipolar cell fate is also plastic during development. To do this, we created a system to conditionally misexpress Prdm1 at different stages of bipolar cell development. We found that Prdm1 blocks bipolar cell formation if expressed before the fate choice decision occurred. When we misexpressed Prdm1 just after the decision to become a bipolar cell was made, some cells were reprogrammed into photoreceptors. In contrast, Prdm1 misexpression in mature bipolar cells did not affect cell fate. We also provide evidence that sustained misexpression of Prdm1 was selectively toxic to photoreceptors. Our data show that bipolar fate is malleable, but only for a short temporal window following fate specification. Prdm1 and Vsx2 act by stabilizing photoreceptor and bipolar fates in developing OTX2+ cells of the retina.


Assuntos
Reprogramação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Vertebrados/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/biossíntese , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Hum Gene Ther ; 31(13-14): 719-729, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32486858

RESUMO

Gene augmentation therapy based on subretinal delivery of adeno-associated viral (AAV) vectors is proving to be highly efficient in treating several inherited retinal degenerations. However, due to potential complications and drawbacks posed by subretinal injections, there is a great impetus to find alternative methods of delivering the desired genetic inserts to the retina. One such method is an intravitreal delivery of the vector. Our aim was to evaluate the efficacy of two capsid-modified vectors that are less susceptible to cellular degradation, AAV8 (doubleY-F) and AAV2 (quadY-F+T-V), as well as a third, chimeric vector AAV[max], to transduce photoreceptor cells following intravitreal injection in sheep. We further tested whether saturation of inner limiting membrane (ILM) viral binding sites using a nonmodified vector, before the intravitreal injection, would enhance the efficacy of photoreceptor transduction. Only AAV[max] resulted in moderate photoreceptor transduction following intravitreal injection. Intravitreal injection of the two other vectors did not result in photoreceptor transduction nor did the saturation of the ILM before the intravitreal injection. However, two of the vectors efficiently transduced photoreceptor cells following subretinal injection in positive control eyes. Previous trials with the same vectors in both murine and canine models resulted in robust and moderate transduction efficacy, respectively, of photoreceptors following intravitreal delivery, demonstrating the importance of utilizing as many animal models as possible when evaluating new strategies for retinal gene therapy. The successful photoreceptor transduction of AAV[max] injected intravitreally makes it a potential candidate for intravitreal delivery, but further trials are warranted to determine whether the transduction efficacy is sufficient for a clinical outcome.


Assuntos
Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Animais , Dependovirus/química , Vetores Genéticos/genética , Injeções Intravítreas , Ovinos , Transdução Genética
16.
Curr Eye Res ; 45(10): 1257-1264, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32108519

RESUMO

Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 µm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.


Assuntos
Defeitos da Visão Cromática/congênito , Defeitos da Visão Cromática/patologia , Fóvea Central/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Adolescente , Adulto , Contagem de Células , Criança , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Análise Mutacional de DNA , Feminino , Fóvea Central/diagnóstico por imagem , Humanos , Masculino , Oftalmoscopia , Topografia Médica , Acuidade Visual/fisiologia , Adulto Jovem
17.
Gene Ther ; 27(1-2): 27-39, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31243393

RESUMO

After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.


Assuntos
Proteínas do Olho/farmacologia , Fatores de Crescimento Neural/farmacologia , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina/efeitos dos fármacos , Serpinas/farmacologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Compressão Nervosa , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa , Neuroproteção , Nervo Óptico , Ratos Wistar , Retina , Células Ganglionares da Retina/metabolismo , Serpinas/metabolismo
18.
Mol Ther ; 28(1): 266-278, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31604676

RESUMO

The form of hereditary childhood blindness Leber congenital amaurosis (LCA) caused by biallelic RPE65 mutations is considered treatable with a gene therapy product approved in the US and Europe. The resulting vision improvement is well accepted, but long-term outcomes on the natural history of retinal degeneration are controversial. We treated four RPE65-mutant dogs in mid-life (age = 5-6 years) and followed them long-term (4-5 years). At the time of the intervention at mid-life, there were intra-ocular and inter-animal differences in local photoreceptor layer health ranging from near normal to complete degeneration. Treated locations having more than 63% of normal photoreceptors showed robust treatment-related retention of photoreceptors in the long term. Treated regions with less retained photoreceptors at the time of the intervention showed progressive degeneration similar to untreated regions with matched initial stage of disease. Unexpectedly, both treated and untreated regions in study eyes tended to show less degeneration compared to matched locations in untreated control eyes. These results support the hypothesis that successful long-term arrest of progression with RPE65 gene therapy may only occur in retinal regions with relatively retained photoreceptors at the time of the intervention, and there may be heretofore unknown mechanisms causing long-distance partial treatment effects beyond the region of subretinal injection.


Assuntos
Terapia Genética/métodos , Amaurose Congênita de Leber/terapia , Mutação , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Animais , Modelos Animais de Doenças , Cães , Eletrorretinografia , Feminino , Seguimentos , Amaurose Congênita de Leber/diagnóstico por imagem , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/diagnóstico por imagem , Retina/metabolismo , Degeneração Retiniana/diagnóstico por imagem , Resultado do Tratamento , Visão Ocular
19.
J Pathol ; 250(2): 195-204, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31625146

RESUMO

Usher syndrome type 3 (USH3) is an autosomal recessively inherited disorder caused by mutations in the gene clarin-1 (CLRN1), leading to combined progressive hearing loss and retinal degeneration. The cellular distribution of CLRN1 in the retina remains uncertain, either because its expression levels are low or because its epitopes are masked. Indeed, in the adult mouse retina, Clrn1 mRNA is developmentally downregulated, detectable only by RT-PCR. In this study we used the highly sensitive RNAscope in situ hybridization assay and single-cell RNA-sequencing techniques to investigate the distribution of Clrn1 and CLRN1 in mouse and human retina, respectively. We found that Clrn1 transcripts in mouse tissue are localized to the inner retina during postnatal development and in adult stages. The pattern of Clrn1 mRNA cellular expression is similar in both mouse and human adult retina, with CLRN1 transcripts being localized in Müller glia, and not photoreceptors. We generated a novel knock-in mouse with a hemagglutinin (HA) epitope-tagged CLRN1 and showed that CLRN1 is expressed continuously at the protein level in the retina. Following enzymatic deglycosylation and immunoblotting analysis, we detected a single CLRN1-specific protein band in homogenates of mouse and human retina, consistent in size with the main CLRN1 isoform. Taken together, our results implicate Müller glia in USH3 pathology, placing this cell type to the center of future mechanistic and therapeutic studies to prevent vision loss in this disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Células Ependimogliais/metabolismo , Proteínas de Membrana/biossíntese , Retina/metabolismo , Síndromes de Usher/metabolismo , Animais , Glicosilação , Humanos , Hibridização In Situ , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , RNA Mensageiro/genética , Síndromes de Usher/patologia
20.
Sci Rep ; 9(1): 15732, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673119

RESUMO

Age-related macular degeneration (AMD) is a multifactorial chronic disease that requires long term treatment. Gene therapy is being considered as a promising tool to treat AMD. We found that increased activation of Rap1a in the retinal pigment epithelium (RPE) reduces oxidative signaling to maintain barrier integrity of the RPE and resist neural sensory retinal angiogenesis from choroidal endothelial cell invasion. To optimally deliver constitutively active Rap1a (CARap1a) into the RPE of wild type mice, self-complementary AAV2 (scAAV2) vectors driven by two different promoters, RPE65 or VMD2, were generated and tested for optimal active Rap1a expression and inhibition of choroidal neovascularization (CNV) induced by laser injury. scAAV2-VMD2, but not scAAV2-RPE65, specifically and efficiently transduced the RPE to increase active Rap1a protein in the RPE. Mice with increased Rap1a from the scAAV2-VMD2-CARap1a had a significant reduction in CNV compared to controls. Increased active Rap1a in the RPE in vivo or in vitro inhibited inflammatory and angiogenic signaling determined by decreased activation of NF-κB and expression of VEGF without causing increased cell death or autophagy measured by increased LCA3/B. Our study provides a potential future strategy to deliver active Rap1a to the RPE in order to protect against both atrophic and neovascular AMD.


Assuntos
Bestrofinas/genética , Neovascularização de Coroide/terapia , Vetores Genéticos/metabolismo , Parvovirinae/genética , Epitélio Pigmentado da Retina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Autofagia , Caspase 3/metabolismo , Neovascularização de Coroide/patologia , Dependovirus , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Epitélio Pigmentado da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas rap1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA